Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules.

نویسندگان

  • Patricia Schaefer
  • Demian Riccardi
  • Qiang Cui
چکیده

A robust approach for dealing with electrostatic interactions for spherical boundary conditions has been implemented in the QM/MM framework. The development was based on the generalized solvent boundary potential (GSBP) method proposed by Im et al. [J. Chem. Phys. 114, 2924 (2001)], and the specific implementation was applied to the self-consistent-charge density-functional tight-binding approach as the quantum mechanics (QM) level, although extension to other QM methods is straightforward. Compared to the popular stochastic boundary-condition scheme, the new protocol offers a balanced treatment between quantum mechanics/molecular mechanics (QM/MM) and MM/MM interactions; it also includes the effect of the bulk solvent and macromolecule atoms outside of the microscopic region at the Poisson-Boltzmann level. The new method was illustrated with application to the enzyme human carbonic anhydrase II and compared to stochastic boundary-condition simulations using different electrostatic treatments. The GSBP-based QM/MM simulations were most consistent with available experimental data, while conventional stochastic boundary simulations yielded various artifacts depending on different electrostatic models. The results highlight the importance of carefully treating electrostatics in QM/MM simulations of biomolecules and suggest that the commonly used truncation schemes should be avoided in QM/MM simulations, especially in simulations that involve extensive conformational samplings. The development of the GSBP-based QM/MM protocol has opened up the exciting possibility of studying chemical events in very complex biomolecular systems in a multiscale framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential ene...

متن کامل

Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions.

There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond-forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One att...

متن کامل

An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.

A method is presented for the efficient evaluation of long-range electrostatic forces in combined quantum mechanical and molecular mechanical (QM/MM) calculations of periodic systems. The QM/MM-Ewald method is a linear-scaling electrostatic method that utilizes the particle mesh Ewald algorithm for calculation of point charge interactions of molecular mechanical atoms and a real-space multipola...

متن کامل

pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.

The accuracy of biological simulations depends, in large part, on the treatment of electrostatics. Due to the availability of accurate experimental values, calculation of pKa provides stringent evaluation of computational methods. The generalized solvent boundary potential (GSBP) and Ewald summation electrostatic treatments were recently implemented for combined quantum mechanical and molecular...

متن کامل

Free Energy Simulations with Qm/mm Using Dftb3, Gromacs and Plumed

The approximative density-functional method DFTB3 has been implemented in the Gromacs package version 5, complementing the existing QM/MM interface. The tight integration within the program gives rise to favorable efficiency, and makes it possible to employ a full PME-based treatment of QM/MM electrostatic interaction. Therefore, unnecessary artifacts are avoided in simulations involving polar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 1  شماره 

صفحات  -

تاریخ انتشار 2005